polynomials - What is the Numerically Stable Way to Compute the Coefficients of a Quadratic Function from Three Points -
i compute coefficients a0
, a1
, , a2
of quadradic function (polynomial of degree 2) given 3 points (x0, y0)
, (x1, y1)
, , (x2, y2)
, yi = a0 + a1*xi + a2*xi*xi
?
i have tried following 2 formulas, not impressed precision of output
final double x0mx1, x0mx2, x1mx2, t0, t1, t2; double a2, a1, a0; x0mx1 = (x0 - x1); x0mx2 = (x0 - x2); x1mx2 = (x1 - x2); // method 1 t0 = (y0 / (x0mx1 * x0mx2)); t1 = (y1 / (-x0mx1 * x1mx2)); t2 = (y2 / (x0mx2 * x1mx2)); a2 = (t0 + t1 + t2); a1 = -((t0 * (x1 + x2)) + (t1 * (x0 + x2)) + (t2 * (x0 + x1))); a0 = (t0 * x1 * x2) + (t1 * x0 * x2) + (t2 * x0 * x1); // method 2 a2 = ((((y1 - y0) * (x0mx2)) + ((y2 - y0) * ((-x0mx1)))) / (((x0mx2) * ((x1 * x1) - (x0 * x0))) + (((-x0mx1)) * ((x2 * x2) - (x0 * x0))))); a1 = (((y1 - y0) - (a2 * ((x1 * x1) - (x0 * x0)))) / ((-x0mx1))); a0 = y0 - (a2 * x0 * x0) - (a1 * x0);
the results sort of fit, i.e., seem within +/- 1e-5 * max{ |a0'|, |a1'|, |a2'| }
window of real solution a0'
, a1'
, , a2'
.
is there better, more numerically stable way compute coefficients?
i using java, btw, although think not matter.
cheers, thomas.
Comments
Post a Comment