r - Create monthly mean by time intervals -


sorry if has been posted looked hard , not find anything.

i working monthly temperature observations 30 years, comprising january 1960 december 1989. looks this:

> head(df)         date     temp 1 1960-01-01 22.92235 2 1960-02-01 23.07059 3 1960-03-01 23.10941 4 1960-04-01 20.78353 5 1960-05-01 17.45176 6 1960-06-01 17.31765 

first, need average januaries, februaries, marches , etc whole period.

then, same specific periods of time (3 years, 5 years, 10 years etc).

for example,

  • the average of jan, feb, mar etc between 1960 , 1964;
  • the average of jan, feb, mar etc between 1965 , 1969;
  • and on.

the final result consist of month, period , temperature, this:

month    period temp   jan 1960-1989  17   feb 1960-1989  12   mar 1960-1989   7   apr 1960-1989   9   may 1960-1989  15   jun 1960-1989  12   jul 1960-1989  17   aug 1960-1989  22   sep 1960-1989  21   oct 1960-1989  21   nov 1960-1989  18   dec 1960-1989  17   jan 1960-1964  17   feb 1960-1964  12   mar 1960-1964   7   apr 1960-1964   9   may 1960-1964   9   jun 1960-1964  11   jul 1960-1964  14   aug 1960-1964  18   sep 1960-1964  13   oct 1960-1964  12   nov 1960-1964  17   dec 1960-1964  11 

any ideias on how this?

in case find useful, here 1 clone of dataset:

df <- structure(list(date = structure(c(-3653, -3622, -3593, -3562,  -3532, -3501, -3471, -3440, -3409, -3379, -3348, -3318, -3287,  -3256, -3228, -3197, -3167, -3136, -3106, -3075, -3044, -3014,  -2983, -2953, -2922, -2891, -2863, -2832, -2802, -2771, -2741,  -2710, -2679, -2649, -2618, -2588, -2557, -2526, -2498, -2467,  -2437, -2406, -2376, -2345, -2314, -2284, -2253, -2223, -2192,  -2161, -2132, -2101, -2071, -2040, -2010, -1979, -1948, -1918,  -1887, -1857, -1826, -1795, -1767, -1736, -1706, -1675, -1645,  -1614, -1583, -1553, -1522, -1492, -1461, -1430, -1402, -1371,  -1341, -1310, -1280, -1249, -1218, -1188, -1157, -1127, -1096,  -1065, -1037, -1006, -976, -945, -915, -884, -853, -823, -792,  -762, -731, -700, -671, -640, -610, -579, -549, -518, -487, -457,  -426, -396, -365, -334, -306, -275, -245, -214, -184, -153, -122,  -92, -61, -31, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304,  334, 365, 396, 424, 455, 485, 516, 546, 577, 608, 638, 669, 699,  730, 761, 790, 821, 851, 882, 912, 943, 974, 1004, 1035, 1065,  1096, 1127, 1155, 1186, 1216, 1247, 1277, 1308, 1339, 1369, 1400,  1430, 1461, 1492, 1520, 1551, 1581, 1612, 1642, 1673, 1704, 1734,  1765, 1795, 1826, 1857, 1885, 1916, 1946, 1977, 2007, 2038, 2069,  2099, 2130, 2160, 2191, 2222, 2251, 2282, 2312, 2343, 2373, 2404,  2435, 2465, 2496, 2526, 2557, 2588, 2616, 2647, 2677, 2708, 2738,  2769, 2800, 2830, 2861, 2891, 2922, 2953, 2981, 3012, 3042, 3073,  3103, 3134, 3165, 3195, 3226, 3256, 3287, 3318, 3346, 3377, 3407,  3438, 3468, 3499, 3530, 3560, 3591, 3621, 3652, 3683, 3712, 3743,  3773, 3804, 3834, 3865, 3896, 3926, 3957, 3987, 4018, 4049, 4077,  4108, 4138, 4169, 4199, 4230, 4261, 4291, 4322, 4352, 4383, 4414,  4442, 4473, 4503, 4534, 4564, 4595, 4626, 4656, 4687, 4717, 4748,  4779, 4807, 4838, 4868, 4899, 4929, 4960, 4991, 5021, 5052, 5082,  5113, 5144, 5173, 5204, 5234, 5265, 5295, 5326, 5357, 5387, 5418,  5448, 5479, 5510, 5538, 5569, 5599, 5630, 5660, 5691, 5722, 5752,  5783, 5813, 5844, 5875, 5903, 5934, 5964, 5995, 6025, 6056, 6087,  6117, 6148, 6178, 6209, 6240, 6268, 6299, 6329, 6360, 6390, 6421,  6452, 6482, 6513, 6543, 6574, 6605, 6634, 6665, 6695, 6726, 6756,  6787, 6818, 6848, 6879, 6909, 6940, 6971, 6999, 7030, 7060, 7091,  7121, 7152, 7183, 7213, 7244, 7274), class = "date"), temp = c(22.9223529411765,  23.0705882352941, 23.1094117647059, 20.7835294117647, 17.4517647058824,  17.3176470588235, 18.0494117647059, 19.6188235294118, 21.3023529411765,  23.1105882352941, 22.2364705882353, 22.7482352941176, 23.5870588235294,  24.0023529411765, 23.0094117647059, 22.0176470588235, 19.4917647058824,  18.1011764705882, 18.3164705882353, 20.0623529411765, 22.8717647058824,  23.2576470588235, 23.68, 22.3694117647059, 22.9517647058824,  23.6976470588235, 23.3294117647059, 20.8564705882353, 18.16,  15.8988235294118, 15.7988235294118, 18.4176470588235, 20.8423529411765,  20.3247058823529, 22.3070588235294, 22.2035294117647, 24.2235294117647,  23.6976470588235, 24.4082352941176, 21.1752941176471, 18.1023529411765,  16.1211764705882, 18.3164705882353, 19.7635294117647, 23.1294117647059,  22.9964705882353, 23.6552941176471, 22.6964705882353, 23.6011764705882,  23.6517647058824, 23.7035294117647, 22.4352941176471, 18.5835294117647,  16.5976470588235, 15.7741176470588, 19.2541176470588, 20.8776470588235,  20.5729411764706, 21.1729411764706, 21.5870588235294, 22.4576470588235,  23.6058823529412, 21.84, 21.6694117647059, 19.2458823529412,  18.7517647058824, 17.7811764705882, 19.4764705882353, 21.9270588235294,  21.5470588235294, 22.88, 23.2458823529412, 24.2776470588235,  25.2470588235294, 23.4694117647059, 21.4435294117647, 19.3941176470588,  18.5447058823529, 17.6, 18.3764705882353, 19.8529411764706, 22.0823529411765,  22.7294117647059, 23.4011764705882, 23.3611764705882, 24.2505882352941,  23.2870588235294, 21.9482352941176, 20.5552941176471, 18.0788235294118,  18.5929411764706, 20.8752941176471, 21.9023529411765, 23.6105882352941,  22.4070588235294, 21.5635294117647, 23.3129411764706, 22.9741176470588,  23.3670588235294, 19.6105882352941, 16.9941176470588, 17.7670588235294,  17.4858823529412, 17.8517647058824, 20.26, 22.1576470588235,  23.8364705882353, 23.4447058823529, 24.8129411764706, 25.1764705882353,  24.2694117647059, 21.5035294117647, 20.0458823529412, 18.4694117647059,  18.4541176470588, 19.5388235294118, 22.02, 20.5364705882353,  22.9858823529412, 21.9752941176471, 23.7729411764706, 24.0576470588235,  24.0941176470588, 22.1552941176471, 21.2329411764706, 19.5611764705882,  17.8788235294118, 18.6823529411765, 20.1541176470588, 21.6258823529412,  21.5211764705882, 23.9811764705882, 24.8352941176471, 24.5882352941176,  24.1729411764706, 21.1035294117647, 19.0435294117647, 17.08,  17.4529411764706, 19.1458823529412, 20.4447058823529, 20.7129411764706,  21.5047058823529, 22.6952941176471, 23.4364705882353, 23.1, 24.1847058823529,  19.8105882352941, 19.9847058823529, 20.5188235294118, 17.7658823529412,  19.4435294117647, 20.7588235294118, 21.7835294117647, 22.7788235294118,  23.2388235294118, 24.9129411764706, 25.6, 23.5647058823529, 24.0058823529412,  19.7823529411765, 19.3152941176471, 18.7741176470588, 19.0305882352941,  20.5576470588235, 21.3611764705882, 21.4247058823529, 23.4811764705882,  23.6505882352941, 25.1870588235294, 23.3541176470588, 21.4823529411765,  18.7364705882353, 17.7235294117647, 18.3976470588235, 19.7235294117647,  21.0741176470588, 21.6094117647059, 22.9635294117647, 22.4011764705882,  23.4152941176471, 24.7741176470588, 24.3270588235294, 20.7976470588235,  18.8764705882353, 17.7788235294118, 16.4129411764706, 21.4117647058824,  22.3317647058824, 21.66, 22.3694117647059, 23.0917647058824,  24.4541176470588, 23.2847058823529, 23.3164705882353, 21.2529411764706,  19.1258823529412, 17.3882352941176, 17.3823529411765, 19.0529411764706,  19.6576470588235, 20.2976470588235, 21.9023529411765, 23.3094117647059,  24.0117647058824, 25.5611764705882, 24.9129411764706, 21.3964705882353,  19.9870588235294, 18.3929411764706, 20.9917647058824, 20.3058823529412,  21.4435294117647, 23.1941176470588, 22.8388235294118, 22.5176470588235,  24.6317647058824, 24.6541176470588, 24.2, 20.84, 18.4576470588235,  17.5011764705882, 19.16, 20.54, 20.1517647058824, 22.6776470588235,  22.7470588235294, 22.7882352941176, 22.0811764705882, 24.2152941176471,  22.9235294117647, 20.8411764705882, 19.6188235294118, 17.16,  16.0529411764706, 20.3223529411765, 19.9752941176471, 22.5152941176471,  22.2705882352941, 23.1541176470588, 23.1047058823529, 23.9517647058824,  24.8176470588235, 22.18, 20.5023529411765, 17.3505882352941,  19.1917647058824, 19.9894117647059, 19.0235294117647, 22.8235294117647,  22.7094117647059, 23.8741176470588, 24.0517647058824, 25.1764705882353,  23.9235294117647, 21.2929411764706, 20.6117647058824, 17.1305882352941,  16.3470588235294, 19.6470588235294, 21.3341176470588, 20.2176470588235,  23.7435294117647, 22.6741176470588, 22.9070588235294, 24.7152941176471,  23.2905882352941, 20.5776470588235, 18.9635294117647, 19.0658823529412,  18.8423529411765, 20.0729411764706, 21.3047058823529, 22.1588235294118,  24.0388235294118, 22.1917647058824, 24.0517647058824, 24.8729411764706,  23.0117647058824, 23, 21.3094117647059, 19.4105882352941, 20.3470588235294,  19.4482352941176, 20.0670588235294, 21.6364705882353, 23.4211764705882,  23.16, 25.4788235294118, 26.4741176470588, 24.0482352941176,  21.4176470588235, 21.7164705882353, 19.0905882352941, 19.6752941176471,  18.1611764705882, 20.0482352941176, 23.4917647058824, 23.4894117647059,  22.5482352941176, 23.1376470588235, 24.9811764705882, 24.1552941176471,  22.8423529411765, 19.7435294117647, 16.4, 17.3105882352941, 20.5235294117647,  21.0494117647059, 23.1352941176471, 23.9435294117647, 23.9058823529412,  24.9835294117647, 24.6952941176471, 24.0047058823529, 23.3164705882353,  21.5823529411765, 18.3447058823529, 18.1964705882353, 20.0035294117647,  20.7152941176471, 22.5705882352941, 24.6541176470588, 23.2329411764706,  25.0517647058824, 24.3329411764706, 23.5811764705882, 22.9988235294118,  19.4976470588235, 17.3188235294118, 19.5635294117647, 19.0211764705882,  19.7223529411765, 22.6858823529412, 23.9423529411765, 23.6905882352941,  25.7129411764706, 23.9505882352941, 24.4376470588235, 22.6070588235294,  19.8882352941176, 17.2058823529412, 16.4211764705882, 20.02,  21.9458823529412, 21.9341176470588, 22.74, 23.8, 23.9611764705882,  24.4564705882353, 24, 23.2129411764706, 19.4729411764706, 17.7105882352941,  16.9682352941176, 19.0341176470588, 20.2917647058824, 20.7776470588235,  22.9364705882353, 22.7894117647059)), .names = c("date", "temp" ), row.names = c(na, -360l), class = "data.frame") 

one option use data.table year grouping cut or findinterval. first case, ie. getting mean of each month aggregating on years, convert 'date' date class , extract months, use grouping variable , mean of 'temp'. note convert 'data.frame' 'data.table' first (setdt(df)).

library(data.table) setdt(df)[, list(temp=mean(temp)) , = .(months= months(as.date(date), abbr=true))] #    months     temp # 1:    jan 23.90506 # 2:    feb 24.40012 # 3:    mar 23.73714 # 4:    apr 21.68584 # 5:    may 19.53863 # 6:    jun 17.90322 # 7:    jul 17.97675 # 8:    aug 19.56051 # 9:    sep 20.90125 #10:    oct 21.96886 #11:    nov 22.86102 #12:    dec 22.92537 

for periodwise , monthly grouping, need create period column. 1 way either cut or findinterval. example, if looking 5 year window, ie. 1960-1964, 1965-1969, etc., create 'period' column creating vec in findinterval using seq, change numeric index derived findinterval 'lbl' created paste. use 'month' , 'period' grouping variable , rest same before.

setdt(df)[, c('month', 'period') := {tmp <- as.date(date)          tmp1 <- as.numeric(format(tmp, '%y'))          tmp2 <- months(tmp, abbr=true)          i1 <- seq(min(tmp1), max(tmp1)+4, by=5)          i2 <- i1+4          lbl <-paste(i1, i2, sep='-')                   list(tmp2, lbl[findinterval(tmp1, i1)])          }] df[, list(temp= mean(temp)), .(month, period)] #     month    period     temp # 1:   jan 1960-1964 23.45718 # 2:   feb 1960-1964 23.62400 # 3:   mar 1960-1964 23.51200 # 4:   apr 1960-1964 21.45365 # 5:   may 1960-1964 18.35788 # 6:   jun 1960-1964 16.80729 # 7:   jul 1960-1964 17.25106 # 8:   aug 1960-1964 19.42329 # 9:   sep 1960-1964 21.80471 #10:   oct 1960-1964 22.05247 #11:   nov 1960-1964 22.61035 #12:   dec 1960-1964 22.32094 #13:   jan 1965-1969 23.64447 #14:   feb 1965-1969 24.25082 #15:   mar 1965-1969 23.24659 #16:   apr 1965-1969 21.23506 #17:   may 1965-1969 19.24706 #18:   jun 1965-1969 18.32235 #19:   jul 1965-1969 17.98282 #20:   aug 1965-1969 19.22376 #21:   sep 1965-1969 21.19247 #22:   oct 1965-1969 21.98682 #23:   nov 1965-1969 22.96776 #24:   dec 1965-1969 22.72612 #25:   jan 1970-1974 24.12165 #26:   feb 1970-1974 24.50659 #27:   mar 1970-1974 23.87412 #28:   apr 1970-1974 21.71153 #29:   may 1970-1974 19.75600 #30:   jun 1970-1974 18.83976 #31:   jul 1970-1974 18.05388 #32:   aug 1970-1974 19.20518 #33:   sep 1970-1974 20.59788 #34:   oct 1970-1974 21.41859 #35:   nov 1970-1974 22.03859 #36:   dec 1970-1974 23.15953 #37:   jan 1975-1979 23.71882 #38:   feb 1975-1979 24.49788 #39:   mar 1975-1979 23.93600 #40:   apr 1975-1979 21.02565 #41:   may 1975-1979 19.21318 #42:   jun 1975-1979 17.64424 #43:   jul 1975-1979 18.00000 #44:   aug 1975-1979 20.32659 #45:   sep 1975-1979 20.71200 #46:   oct 1975-1979 22.06894 #47:   nov 1975-1979 22.42565 #48:   dec 1975-1979 22.97224 #49:   jan 1980-1984 23.91882 #50:   feb 1980-1984 25.03812 #51:   mar 1980-1984 23.81835 #52:   apr 1980-1984 21.69365 #53:   may 1980-1984 20.62071 #54:   jun 1980-1984 18.40965 #55:   jul 1980-1984 18.88071 #56:   aug 1980-1984 19.46376 #57:   sep 1980-1984 20.35553 #58:   oct 1980-1984 22.06565 #59:   nov 1980-1984 23.48047 #60:   dec 1980-1984 22.88965 #61:   jan 1985-1989 24.56941 #62:   feb 1985-1989 24.48329 #63:   mar 1985-1989 24.03576 #64:   apr 1985-1989 22.99553 #65:   may 1985-1989 20.03694 #66:   jun 1985-1989 17.39600 #67:   jul 1985-1989 17.69200 #68:   aug 1985-1989 19.72047 #69:   sep 1985-1989 20.74494 #70:   oct 1985-1989 22.22071 #71:   nov 1985-1989 23.64329 #72:   dec 1985-1989 23.48376 #    month    period     temp 

in same way, can 10 year or other windows.


Comments

Popular posts from this blog

matlab - error with cyclic autocorrelation function -

django - (fields.E300) Field defines a relation with model 'AbstractEmailUser' which is either not installed, or is abstract -

c# - What is a good .Net RefEdit control to use with ExcelDna? -