r - avgokmts returning incorrect maximum rain from ok mesonet data -


i'm using okmesonet package data on rainfall. i've tried using avgokmts package calculate rainfall each day, i'm getting non-sensical values.

get rain data norman, ok (cumulative rain in mm on day @ 5 min intervals)

library(okmesonet) raindat <- okmts(begintime="2016-06-21 00:00:00", endtime="2016-07-04 00:00:00",           station="nrmn", variables="rain", localtime=true) 

calculate max rain per day

avgokmts(raindat, by="day", metric="max") 

which returns these values

   stid stnm day month year  rain     time       date 1  nrmn  121  21    06 2016  0.00 23:55:00 2016-06-22 2  nrmn  121  22    06 2016  0.25 23:55:00 2016-06-23 3  nrmn  121  23    06 2016 59.70 23:55:00 2016-06-24 4  nrmn  121  24    06 2016  0.00 23:55:00 2016-06-25 5  nrmn  121  25    06 2016  0.00 23:55:00 2016-06-26 6  nrmn  121  26    06 2016  0.00 23:55:00 2016-06-27 7  nrmn  121  27    06 2016  0.00 23:55:00 2016-06-28 8  nrmn  121  28    06 2016  0.00 23:55:00 2016-06-29 9  nrmn  121  29    06 2016  0.00 23:55:00 2016-06-30 10 nrmn  121  30    06 2016 28.19 23:55:00 2016-07-01 11 nrmn  121  01    07 2016  0.00 23:55:00 2016-07-02 12 nrmn  121  02    07 2016  0.51 23:55:00 2016-07-03 13 nrmn  121  03    07 2016  0.00 23:55:00 2016-07-04 14 nrmn  121  04    07 2016  0.00 00:00:00 2016-07-04 

but these rainfall values don't match rainfall graphed below (peak rainfall occurs on june 27th , july 3rd).

plot(raindat$time, raindat$rain, xlab="date", ylab="cumulative daily rain (mm)") 

cumulative rain fall plot

why isn't avgokmts working in case? there error in how i'm calling function? there alternative way calculate daily rainfall using dataset?

i'm pretty sure pkg author did not deal utc<->cdt conversions precip readings. here's fragile way max precip per day if using single station. expansion of procedure handle multiple stations should adding 1 more group_by() variable.

library(okmesonet) library(dplyr) library(ggplot2) library(gridextra)  raindat <- okmts(begintime="2016-06-21 00:00:00",                   endtime="2016-07-04 00:00:00",                  station="nrmn",                   variables="rain",                   localtime=true)  # use pkg calculation -------------------------------------------------  pkg_calc <- avgokmts(raindat, by="day", metric="max")  # begin our own calculations ----------------------------------------------  raindat <- mutate(raindat, day=format(time, "%y-%m-%d"))  day_precip_max <- function(x) {    prev_day_last_reading_time <- as.posixct(sprintf("%s 23:55:00", x$day[1]), tz="america/chicago") -                                 as.difftime(1, unit="days")    prev_day_last_reading <- raindat[raindat$time==prev_day_last_reading_time, "rain"]    if (length(prev_day_last_reading) == 0) prev_day_last_reading <- 0    x <- mutate(x, rain=rain - prev_day_last_reading)    data_frame(     stid=x$stid[1], stnm=x$stnm[1],      day=substr(x$day[1], 9, 10),     month=substr(x$day[1], 6, 7),     year=substr(x$day[1], 1, 4),     rain=max(x$rain)   )  }  new_calc <- group_by(raindat, day) %>% do(day_precip_max(.)) %>% ungroup()  # convert posixct common plotting axis ------------------------------  pkg_calc <- mutate(pkg_calc, day=as.posixct(sprintf("%s-%s-%s 23:55:00", year, month, day), tz="america/chicago")) new_calc <- mutate(new_calc, day=as.posixct(sprintf("%s-%s-%s 23:55:00", year, month, day), tz="america/chicago"))  grid.arrange(   ggplot(raindat, aes(x=time, y=rain)) +      geom_point() +     scale_x_datetime(date_breaks="1 day", date_labels="%d") +     labs(x=null, y="rain", title="raw readings") ,   ggplot(pkg_calc, aes(x=day, y=rain)) +     geom_point() +     scale_x_datetime(date_breaks="1 day", date_labels="%d", limits=range(raindat$time)) +     labs(x=null, y="rain", title="package aggregation (max)") ,   ggplot(new_calc, aes(x=day, y=rain)) +     geom_point() +     scale_x_datetime(date_breaks="1 day", date_labels="%d", limits=range(raindat$time)) +     labs(x=null, y="rain", title="manual aggregation (max)") , ncol=1 ) 

enter image description here

i have plot displaying max reading @ 23:55:00.


Comments

Popular posts from this blog

matlab - error with cyclic autocorrelation function -

django - (fields.E300) Field defines a relation with model 'AbstractEmailUser' which is either not installed, or is abstract -

c# - What is a good .Net RefEdit control to use with ExcelDna? -